HOME  |  ARTICLESBAND CONDITIONS  |  EQUIPMENT  |  LINK  | MAIL   |  OPERATIONAL  |  PROJECTS  |  REPAIRS & MODS
ALL BAND DIPOLE Mk3

The Mk3 All Band HF Doublet is the same as the Mk2 version with the inclusion of a balun at the interface from the coax to the open wire feed-line.  This antenna is normally used with a T-Match Antenna Tuning Unit. November 2019


The All Band HF Doublet Mk3 is a 42-meter-long Inverted 'V' antenna, with an apex of 11 meters above the ground. It is designed to be a versatile antenna for all bands ranging from 160m to 10m.

Description:
The All Band HF Doublet is often referred to as a random length dipole because its length is generally determined by the available space, within reasonable limits. However, there are a couple of limitations regarding the ideal dipole length. Firstly, the antenna's efficiency begins to decline significantly if the dipole length is much less than half a wavelength for the lowest frequency band it is intended to operate on. Secondly, it is advisable to avoid lengths that result in extremely high impedance for the Matching Unit, as it may struggle to match such impedance. The second limitation can be easily addressed by adding or subtracting some length from either the dipole or the feed line. Often, just a meter of adjustment can rectify the issue. Although the antenna is shorter than half a wavelength at 1.8 MHz, being slightly over a quarter wavelength, it still provides usable access to this band.

The completed antenna system consists of a 42-meter centre-fed doublet, with each leg measuring 21 meters. It is suspended at the center and supported by a short 1-meter cross arm attached to the top of an 11-meter tower. The doublet is fed with 8 meters of 450-ohm ladder line, which is then connected to a 3.5-meter section of LDF4-50 heliax. This heliax section incorporates a combination choking balun and step-up balun (explained in detail below) and runs into the shack to a T-Match antenna matching unit.

The ARRL Handbook presents the results of a comparative study conducted on the All Band HF Doublet, both in a flat-top doublet and an inverted 'V' configuration. The conclusion drawn from the study is that both configurations offer a practical and flexible antenna, with the flat-top configuration providing a superior low-angle radiation pattern due to its greater overall height above the ground.
 

 

Photo 1 Multi-band Doublet and feed-lines. Other antennas are the 2m band ground plane and 6m Ringo antenna November 2019

 

One of the disadvantages of this antenna system is its balanced nature, where each half of the doublet and feed-line configuration needs to mirror the other. Failure to achieve this balance will result in the feed-line receiving and radiating energy, leading to a distortion of the radiation pattern. Additionally, it can allow the feed-line to pick up stray signals from computers and other sources as it enters the radio room. However, despite this drawback, I have found that this antenna system is reasonably forgiving.

The unbalanced coaxial cable is connected to the balanced feed line using a combination of a 1:1 choking balun and a 1:4 impedance step-up balun in series. The setup of the antenna, feed lines, balun, and antenna is depicted in Figure 1 below.

The purpose of the 1:1 choking balun is to mitigate common mode RF currents on the coax cable, reduce noise pickup from within the building, and produce a balanced antenna system with a more predictable radiation pattern.

The inclusion of the 1:4 impedance step-up balun is to achieve a broader impedance matching range between the antenna/feed line and the nominal 50-ohm impedance of the coax.

 

 

Figure 1 Multi-band Doublet, feed-lines and balun configuration

Basic Multi-band Doublet Arrangement

(1)  Inverted 'V' Dipole. (42Mtr total length)

(2)  450 Ohm Ladder Line. (8Mtr)

(3)  1:4 Current Balun. See Balun Guanella Current 1:4 Single core

(4)  1:1 Choking Balun. See Balun Choke HF

       For details of the feed-lines and balun configuration. See HF feedline Choke & Balun

(5)  LDF4-50 Heliax (3.5Mtr)

(6)  T-Match Tuner. See T Match Tuner

(7)  VSWR Meter.

(8)  HF Transceiver.

 

Construction

 
The 1:1 choking balun is created by winding a length of RG58 50ohm coax around a single FT240-43 ferrite toroid core, forming 14 turns. Detailed connection information and specifics about the
Balun Choke HF for the 1:1 choking balun can be found in Figure 2.

For the 1:4 current balun, two ideally 100ohm transmission lines are wound evenly spaced in the same direction around a single FT240-43 ferrite toroid core. The connection details and information about the
Balun Guanella Current 1:4 Single core can also be found in Figure 2.

The inverted 'V' doublet was constructed using 42m of standard 4mm2, 7 strand copper wire. Glazed porcelain electric fence insulators were used at the ends and 'V' apex attachments. The apex of the 'V' is attached to a small steel cross-arm located at the top of the 11m tower. The doublet is fed with 8m of 450ohm ladder line, which drops vertically away from the 'V' apex and connects to an aluminium enclosure housing the baluns.

 

MMANA-GAL antenna analyser modelled radiation plot for 30, 20, 17, 15, 12 and 10m bands.

Figure 6  Modelled radiation plot for the 10m band

Figure 7  Modelled radiation plot for the 12m band

Figure 6  Modelled radiation plot for the 10m band

 

Figure 7  Modelled radiation plot for the 12m band

 

Figure 8  Modelled radiation plot for the 15m band

Figure 9  Modelled radiation plot for the 17m band

Figure 8  Modelled radiation plot for the 15m band

 

Figure 9  Modelled radiation plot for the 17m band

 

Figure 10  Modelled radiation plot for the 20m band Figure 10 Modelled radiation plot for the 30m band

Figure 10  Modelled radiation plot for the 20m band

Figure 11  Modelled radiation plot for the 30m band

Summary

The random length all band doublet represents some clear advantages in cost and operational flexibility within the limitations of the average Australian suburban block. There for if you can have only one HF antenna the random length all band doublet would be a pretty good choice.  

References 

 

WIRE SPLICE - INLINE

Wire splicing for inline joining of aerial wire.

  

WIRE SPLICE TERMINATION

Wire splicing for terminating an antenna aerial wire or guy wire to a strain insulator or thimble.

 

WIRE SPLICE TERMINATION & TAIL

Wire splicing for terminating an antenna aerial wire to a strain insulator with a tail for connecting to the feed line.

 

  

The ARRL Antenna Book.

The 1990 ARRL Hand Book.

The above radiation plots were produced using MMANA-GAL Antenna Analyser software by JE3HHT, Makoto (Mako) Mori at http://hamsoft.ca/

 

 

TOP OF PAGE

Page last revised 29 June, 2023

*

 

ACTIVITIES | ARTICLES | EQUIPMENT | HOMELINK | MAIL | PROJECTS

Web design by Peter Miles

All content may be used for unlimited distribution with credits.

This site has been designed to cater for 800 x 600 resolution.
Site is best viewed with Internet Explorer 5.5 or Netscape 6 or higher.