Navigation

     Contact Details

     Peter Miles
     Northam, Western Australia
     QRZ Page: VK6YSF

 

     Email

     

 

       Social Media

             

 

    Buy me a coffee

If you found information on this site interesting, beneficial, or learned something new, please consider buying me a cup of coffee by clicking the coffee cup below. It helps keep the website going and is greatly appreciated.

 

 

 

RULES FOR PATCH ANTENNAS

Extract from AMSAT Phase 3D Antenna Design Review 


HOME  > PROJECT > PATCH ANTENNA ARRAY >

Rules for Patch Antennas

  1. Use only air dielectric. Air (or space vacuum) has the lowest loss and a dielectric value of unity. A dielectric constant, E=1.0, makes the patch element full size which gives maximum gain. Teflon with a E=2.45 reduces the size to 64 percent and with no loss reduces the maximum gain by 3 dB. This is caused by the wider beam width of the smaller patch.

  2. Mount patch higher not lower. The height of the patch above the groundplane should be approximately two percent of the width of the patch. With air dielectric a half wave square patch should be a minimum 0.01 wavelengths above the ground plane. Lower heights result in higher Q and high currents resulting in higher losses.

  3. Design for maximum bandwidth. The bandwidth of a patch antenna is direct function of it's height. The limiting factor is mutual H-plane coupling in a close spaced planner array. The higher the elements the greater the spacing required between elements. Minimum edge spacing for 20 dB isolation between elements is 0.12 wavelength for a height of 0.04 wavelength.

  4. Use coaxial not stripline feed. Patch antennas and striplines are not compatible on the same dielectric material. Strip lines prefer a high dielectric substrate and minimum height to work properly. 50 ohm strip lines also require a 1/4 wave transformer to match the edge of a patch.

 

With these rules in mind a 0.435 GHz six element circular patch array was designed for the Phase 3D Spacecraft. They are supported by a central grounding post and a dielectric honeycomb under each element. Each element is operated in a RHCP mode. Element center-center spacing is set at 0.69 wavelengths (470mm) and is limited by the size of the available top plate area of the spacecraft. The original, and most basic of these six element arrays is a hexagonal pattern. With equal power to all elements, the array is set for maximum gain. All elements are fed in phase and no phase changes are required.

The 1.269 GHz antenna is a Short Back Fire (SBF). This antenna is two wavelengths in diameter and has a 1/4 wavelength high outer ring with a 1/2 wavelength high post in it's center supporting a turnstile at 1/4 wavelength high and a 1/2 wave circular reflector. The antenna has a gain of 15 dBic and has a very smooth pattern. The antenna fits well on the spacecraft and is within the Negotiable volume set by ESA. This antenna also had the maximum gain per unit of area for any antenna tested.

The 2.401 GHz antenna is a 500mm dish with a gain of 18 dBic. The first prototype was built by K5SXK and weighs in at 1.3 Kg or 3 pounds for the rest of us. The feed is a turnstile backed by a reflector. K5SXK builds space qualified antennas in his line of work and expects to deliver a space qualified antenna ready for our coax connector. Nice Work.

The 5.6 GHz antenna could be a 250mm dish or a multi-element array. W3TMZ is working on a 5.6 GHz receiver and antenna array. The antenna would be a low profile design be 250mm in diameter. AMSAT has received a 250mm spun aluminum dish from a group in Belgium. It weighs 175 grams an would have a gain of 20 dBic.

The 10 GHz antenna is now a single 20 dBic circular horn. OH7JP and his group from Finland are well along on their design. The original design using four horns with a separate amp on each horn has been changed to a single horn with multiple amps and a waveguide feed. 

  

 

TOP OF PAGE

Page last revised 12 March 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Space Weather

   https://www.swpc.noaa.gov/

    
Merry Christmas Reindeer Gif

   Notice Board

VK6YSF JS8Call and Olivia 8/250 operations.

Current activity is generally focused - though not restricted to - JS8Call operations on the 20m, 30m, and 40m bands.

Currently there is a particular emphasis on JS8Call on the 10 and 12 m band between 00:00 and 12:00 Z, often extending beyond this period.

Olivia 8/250 is used occasionally on the 20m band.

Proposed band and mode activity is often communicated on HamSpots: https://hamspots.net/js8/ or my profile on 

X: https://x.com/vk6ysf97230 .  

Feel free to contact me to discuss or arrange a schedule for a contact.

Post date: 7 December 2025

 

Western Australian SSTV net 

Popular Western Australian SSTV net for both digital and anolog SSTV.

Generally found at 7214.0kHz LSB every afternoon from 08:00 UTC (4:00pm WST)

For more details: https://www.wasstv.net/wasstv.net/index.html

Post date: 8 December 2025

 

VK6MJM LF (136kHz) and MF (474kHz) Beacon

VK6MJM is a  LF/MF station located in Manjimup, Western Australia.

Common Mode: FST4W 300 (Similar to WSPR)  

Note: other modes and sub-modes may be used.

Station details were presented by Peter Hall (VK6HP) at PerthTech 2024.Presentation PDF: Peter Hall VK6HP at PerthTech

QRZ Page: VK6MJM on QRZ.com

Post date: 10 March 2025

 

 

 

 

All content may be used for unlimited distribution with full credits.

Amateur Radio Station VK6YSF - Promoting amateur radio communication and experimentation.